兴发pt官方合作亚洲|兴发老虎亚洲第一登录平台【唯一pt官方网站】

师资队伍
刘斌
时间:2017-09-04    浏览量:

1基本信息

名: 刘斌

别:

称: 教授(硕导)

务:

话:

办公地点: 主教2010

E-mail binliu@cqu.edu.cn

研究方向 量子信息及其在密码学中的应用;量子计算及其在网络安全、机器学习等领域的应用。

招生信息: 年度招收硕士3名,招收数学、计算机等专业。

2个人简介:

刘斌,北京邮电大学数学与应用数学学士、密码学博士。主要从事量子密码领域的研究工作,研究方向是量子密码协议的设计与分析,包括量子密钥分发的安全性分析、量子保密查询的实用化进程以及信息论安全的量子位置认证可行性分析等;在包括《Physical Review A》《Optics Express》《IEEE Journal of Selected Topics in Quantum Electronics》《IEEE Transaction on Computer》等国际著名期刊上发表SCI检索论文30余篇,其中第一作者论文11篇,第二作者兼通信作者论文4篇,SCI总引用次数达720余次,H因子16。2016年入选首届“博士后创新人才支持计划”;2017年获首届“中国密码学会优秀博士学位论文”;2018年获“《中国科学:力学物理天文学》2017年度优秀论文”。

3学术成果

论文(部分已发表SCI论文)

[19] Liu B, Gao Z F, Xiao D, et al. Quantum identity authentication in the orthogonal-state-encoding QKD system.Quantum Information Processing, 18(5), 2019, 137.

[18] Wei C Y, Cai X Q, Liu B, et al. A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Transactions on Computers, 67(1), 2018, 2-8. (影响因子3.052CCF A类,SCI引用38次,ESI高被引论文)

[17] Liu B, Xiao, D, Huang, W, et al. Quantum private comparison employing single-photon interference.Quantum Information Processing, 16(7), 2017, Unsp 180. (影响因子2.283,中科院分区小类二区)

[16] Liu B, Xiao, D, Huang, W, et al. Comment on ``Quantum oblivious set-member decision protocol''. Physical Review A, 93(3), 2016, 036301. (影响因子2.909中科院分区二区Top期刊)

[15] Liu B, Xiao, D, Jia, H-Y, et al. Collusive attacks to “circle-type” multi-party quantum key agreement protocols. Quantum Information Processing, 2016, 15: 2113–2124. (影响因子2.283,中科院小类二区,SCI引用17次)

[14] Gao F, Liu B, Huang W, et al. Postprocessing of the Oblivious Key in Quantum Private Query. Ieee Journal of Selected Topics in Quantum Electronics, 21(3), 2015, 11 6600111. (影响因子3.367中科院分区二区,SCI引用57次)

[13] Liu B, Gao, F, Huang, W, et al. QKD-based quantum private query without a failure probability.Science China-Physics Mechanics & Astronomy, 58(10), 2015, 6 100301. (影响因子2.754,SCI引用61

[12] Liu B, Gao, F, Huang, W, et al. Controlling the key by choosing the detection bits in quantum cryptographic protocols. Science China-Information Sciences, 58(11), 2015, 112110. (影响因子2.188,CCF B类期刊

[11] Liu B, Gao, F, Qin, S J, et al. Choice of measurement as the secret. Physical Review A, 89(4), 2014, 042318. (影响因子2.909中科院分区二区Top期刊)

[10] Huang W, Wen Q Y, Liu B, et al. Quantum anonymous ranking. Physical Review A, 89(3), 2014, 13 032325. (影响因子2.909中科院分区二区Top期刊,SCI引用20次)

[9] Zhang J L, Guo F Z, Gao F, Liu B, et al. Private database queries based on counterfactual quantum key distribution. Physical Review A, 88(2), 2013, 8 022334. (影响因子2.909中科院分区二区Top期刊SCI引用46)

[8] Gao F, Liu B, Zhang W W, et al. Is quantum key distribution suitable for steganography? Quantum Information Processing, 12(1), 2013, 625-630.

[7] Liu B, Gao, F, Huang, W, et al. Multiparty quantum key agreement with single particles. Quantum Information Processing, 12(4), 2013, 1797-1805. (SCI引用38

[6] Liu B, Gao, F, Jia, H Y, et al. Efficient quantum private comparison employing single photons and collective detection. Quantum Information Processing, 12(2), 2013, 887-897. (SCI引用42

[5] Zhang W W, Gao F, Liu B, et al. A watermark strategy for quantum images based on quantum fourier transform. Quantum Information Processing, 12(2), 2013, 793-803. (SCI引用98

[4] Zhang W W, Gao F, Liu B, et al. A Quantum Watermark Protocol. International Journal of Theoretical Physics, 52(2), 2013, 504-513. (SCI引用59次

[3] Gao F, Liu B, Wen, Q Y, et al. Flexible quantum private queries based on quantum key distribution. Optics Express, 20(16), 2012, 17411-17420. (影响因子3.356中科院分区二区Top期刊SCI引用66

[2] Liu B, Gao, F, Wen, Q Y. Eavesdropping and Improvement to Multiparty Quantum Secret Sharing with Collective Eavesdropping-Check. International Journal of Theoretical Physics, 51(4), 2012, 1211-1223.

[1] Liu B, Gao, F, Wen, Q Y. Single-Photon Multiparty Quantum Cryptographic Protocols with Collective Detection. Ieee Journal of Quantum Electronics, 47(11), 2011, 1383-1390. (影响因子2.069,SCI引用23发表当年中科院分区二区

项目

目前作为负责人负责的在研项目包括:

1. 国家自然科学基金青年项目,量子不经意密钥分发的实际安全性研究

2. 博士后基金面上项目 量子保密查询理论与实际安全性研究

3. 基于相位编码的QPQ的设计与实现 重庆市博士后特别资助

4. 实用化量子身份认证研究 一般横向项目

获奖

2016年 北京邮电大学优秀博士学位论文

2016年 度“博士后创新人才支持计划”(首届)

2017年 中国密码学会优秀博士学位论文

2018年 《中国科学:力学 物理 天文学》2017年度优秀论文

其他

量子信息研究简介

量子技术在计算和通信领域的发展概况

本世纪内,量子技术必定在通信和计算领域带来巨大的变革。近几年IBM、Google、阿里巴巴等公司相继投入大量经费研究量子计算,部分专用量子计算机已经实现商用,通用量子计算机的研发也正在加速;很多国家相继建成了的量子通信网络,2016年我国发射了全球首颗“墨子号”量子科学实验卫星。伴随着大量人力财力的投入,信息领域量子革命正向我们走来,可能还需要十几年,也可能还需要几年,也许就在明天!

量子计算的优势

量子技术在计算领域的应用主要基于量子比特的叠加性质

一个经典的比特(bit)只有一个状态,要么是0,要么是1;而一个量子比特(qubit)可以同时表示0和1。

简单推广一下,n个bit只能表示一种n位二进制序列;而n个qubit可以同时表示所有2^nn位二进制序列。

这样,对n个量子比特的所代表的数据进行一次计算,就相当于经典计算机中进行了2^n次计算,这就是量子并行计算的优势所在;虽然在理论上我们并不能将这2^n种计算结果全部有效提取,但可以通过巧妙的量子变换,大概率地提取到满足设计要求的那些结果,这也是量子计算的可行之处。最著名的量子算法有两个:

一个是可用于大整数分解的Shor算法将指数级的计算复杂度降到了多项式级;Shor算法也使得目前被广泛应用的RSA公钥密码体制在量子计算机面前彻底失效。

另一个是Grove量子搜索算法将无序搜索的时间复杂度由N降为√N;在信息安全领域,这对分组密码构成了一定威胁,相当于密钥长度减半。

研究表明,量子计算将在信息安全人工智能最优化以及天气预测等领域带来巨大变革。

此外,量子计算的大部分过程是酉变换,是可逆的,这种过程原则上不会引起熵的增加,即没有能量消耗。因此,量子计算不但能在很多领域大大提升运算速度,还可能成为一种更加节能和环保的计算方式。

量子通信的优势

量子技术在通信领域的应用主要基于量子态的测不准原理。比如我们无法同时知道一个粒子准确速度和确切位置:对速度的测量肯定会干扰位置信息,对位置的测量也会必然干扰速度信息。利用这一点,我们可以设计保密性更强、更加安全的通信方案。

基于测不准原理,量子通信与经典通信的一个显著区别在于:在经典通信中被动攻击(即对信道中信息的窃听)是难以检测的;而在量子通信中,我们不但可以检测出是否存在窃听者还可以计算窃听者获取了多少信息,这样就可以通过“保密放大”手段压缩掉窃听者已获得的信息,实现无条件安全的保密通信协议。

最早的量子保密通信协议是1984年提出的,墨子号的一项重要职能就是实现卫星到地面的自由空间内的这种协议

此外,量子信息还有很多特别之处。例如经典信息论中条件熵是大于或等于0:等于0意味着两个事件是独立的;大于0意味着两个事件是有一定关联性的,从一个事件的结果可以推测出另一个事件的信息;在量子信息论中条件熵还可以为负值,负的条件熵与量子世界中另一个神奇的现象有关——量子纠缠。A、B两个事件的条件熵为负,当且仅当A、B之间存在纠缠。

最基本的量子纠缠是指两个彼此分离的量子态,如果对其中一个进行测量得到某个测量结果(结果是完全随机的),那么另一个的测量结果就确定了(如果单独对这个量子态测量,测量结果原本也应该是随机的)。

从纠缠的这个性质出发,可以实现一种被称为“隐形传态”的技术,就是《星际迷航》中那种瞬间转移的技术。理论上,不同人之间的区别在于体内原子分子之间的联系不同,即构成这个人的所有微观粒子之间的组合和关联信息;而单独看这些基本原子分子,不同的人之间并无区别。所以,一个人的本质就是构成这个人物质之间的组合和关联信息,而不在于构成这个人的物质本身(通过新陈代谢,人体物质每天都在变化,而物质之间的组成和关联确是稳定的)。利用“隐形传态”技术,可以将某个人的这些信息以光速传到远方,然后在远方进行重组,实现“光速旅行”(注意,由于这些信息本身是量子的,经典信息无法准确描述;事实上,准确描述一个qubit状态就可能需要无限的经典信息,所以“瞬间转移”这种技术只有量子通信才可以实现)。当然,这种技术与量子计算相比,离我们更加遥远。目前只能做到光子和原子级别的“隐形传态”。墨子号的另一项任务就是进行天地之间的量子隐形传态实验

量子计算和量子通信的原理和技术看似高深,但并不是所有相关研究都需要精通量子力学等物理基础。量子计算和量子通信的一些理论研究更加依赖计算机和数学知识,如Turing机、计算复杂性、矩阵论等等。对于没有物理背景的初学者,即使没有系统学习过量子力学,只要掌握了量子力学的数学模型,也可以很好地展开对量子计算和量子信息的初步学习和研究。

欢迎有兴趣的同学和老师就相关问题与我一同探讨学习~

4成果简介